LONGTERM CHANGES IN SPECIES COMPOSITION OF SWISS BEECH FORESTS

GIAN-RETO WALTHER

Geobotanisches Institut ETH, Zürichbergstrasse 38 - 8044 Zürich, Switzerland

ABSTRACT - Even in so called undisturbed forest ecosystems there have always been all sorts of changes in structure and species composition going on. The presented study tries to distinguish between natural changes in species composition due to the natural forest life-cycle and new occurring, possibly man induced changes in forest vegetation, which have happened within the last thirty years. General trends have been elaborated and different causes drawn up. More detailed results concerning beech forest are presented and discussed in a broader context with other recent studies conducted in Europe to the same topic.

KEY WORDS - vegetation changes, climate change, beech forest, Switzerland.

INTRODUCTION

Forests have always been subject to changes independently from the time-span considered. The time scale of changes may vary from weeks, months or years to decades, centuries or millenia. These changes don’t happen by chance only, they are part of regular processes, either based on the constitution of the plants or on changing environmental conditions (Fischer, 1995). The composition and structure of actual forests must not be the same as the future ones. Forest development can be seen as a regeneration cycle with different phases. According to Mayer et al. (1980) the cycle can be divided into a rejuvenation-, initial-, optimal-, terminal- and decomposition phase (compare also Fischer 1997). This cycle runs more or less continuously and permanently in every nature-near forest and under more or less constant environmental conditions. Additionally, there are often fluctuations in the time-scale of a few years but with only minor impact on the ongoing forest life-cycle process. However, as soon as the environmental conditions are becoming subject to changes, then these cycles will be influenced and overlaid by other changes inducing processes. These processes may be both directed or chaotic but also changes such as of fluctuations with intrinsic triggering must not be excluded (see e.g. Klötzli, 1995). In practise it is often difficult to distinguish these different changes and even more difficult to find the reasons causing such processes. Not very seldom a complex combination of all sorts of cyclic, fluctuating, directed...
and chaotic changes is presented by nature, so that the explanation and classification of the single factor must be seen as best approximation and can’t be defined in a definite way. Nevertheless we need the knowledge of ongoing processes in terms of trend-analysis to detect changes in their early beginnig. The time-span available for adaptation and reaction to the new conditions will depend on the moment recently induced processes can be detected.

MATERIAL AND METHODS

On a thirty kilometer wide transect across Switzerland, starting from Schaffhausen in the North to Chiasso in the South, more than 300 relevé plots have been resurveyed in 1994. The “old., relevés mostly from the late fifties and early sixties have been stored in a forest-database at the WSL in Birmensdorf. Relevé plots for resurveying have been selected according to the following criteria: The position of the site must have been rediscoverable with a certain reliability, so that the location of the earlier and present relevé can be considered as identical. No management and/or major natural disturbance must have happened in the periode between the surveys. All the relevés were taken in mesic forests in the colline and submontane belt up to an elevation of 800m a.s.l., in the northern part of Switzerland mostly belonging to the Galio-Fagion type E&K 7/8 (Ellenberg & Klötzli, 1972). The investigated relevé area was 100-400m². Species determination and nomenclature was conducted after Hess et al. (1976-80). According to the old relevés the new ones have been investigated with the Braun-Blanquet-methode. Every given pair of relevés has been analyzed on its changes in species composition and species frequency. Presence, absence, relative variation and new occurrence have been evaluated on the species level. For the interpretation the indicator values by Landolt (1977) and Lindacher (1995) have been applied.

RESULTS

As a result of the resurvey in the northern part of Switzerland more than 150 given pairs of relevés were obtained. Examples are given in fig. 1 and fig. 2.

Preliminary statements were given by Klötzli 1995, respectively Klötzli et al. 1996. In summarized form they are resumed in table 1. Detailed results over the whole transect are given by Carraro et al. 1999.

<table>
<thead>
<tr>
<th>Relevés of beech forests of northern Switzerland</th>
<th>period [years]</th>
<th>persistent</th>
<th>disappeared</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>30-58</td>
<td>30-86</td>
<td>14-70</td>
<td>0-200</td>
</tr>
<tr>
<td>average</td>
<td>50</td>
<td>50</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

all values in percent and rounded
Fig. 1 - Comparison of old and new relevé
Fig. 2 - Comparison of old and new relevé showing the appearance of laurophyllous exotics
The direction of the general shift can be derived from the individual characteristics of all particular species according to their increase or decrease. Table 2 summarizes the results as an overview.

<table>
<thead>
<tr>
<th>Results</th>
<th>Possible explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing frequency of:</td>
<td>- maturing forests</td>
</tr>
<tr>
<td>- climax species</td>
<td>- aerial input of nitrogen</td>
</tr>
<tr>
<td>(Fagus sylvatica, Carpinus betulus, Veronica montana...)</td>
<td>30-50 kg / ha / year</td>
</tr>
<tr>
<td>- mesophilous species, growing also in poor light conditions (Sambucus nigra, Pannonia purpurea, Carex pendula...)</td>
<td></td>
</tr>
<tr>
<td>Decreasing number of mesophilous species (species growing in forest gaps) (Fagus sylvatica, Salix alba, Aesculus hippocastanum)</td>
<td>- more closed canopy with increasing age of forests</td>
</tr>
<tr>
<td>Decreasing number of nitrophilous and oligotrophic species (Vaccinium myrtillus, Carex pilulifera, Teucrium scorodonia, Veronica officinalis, Melampyrum sp., Carex ruscifolia...)</td>
<td></td>
</tr>
<tr>
<td>Decreasing number of montane species (Sambucus racemosa, Lonicera alpigena, Polystichum lobatum, Aruncus sylvester, Veronica lamellosa...)</td>
<td>- climatic effect</td>
</tr>
<tr>
<td>Increasing number and frequency of:</td>
<td>- climate effect</td>
</tr>
<tr>
<td>- evergreen broad-leaved (laurophyllous) species (Taxus baccata, Halesia terrestris (-&gt; climbing))</td>
<td>&gt; mild winters</td>
</tr>
<tr>
<td>- Bulbophyllum species (Prunus sargentii, Lonicera daj, spec., Cotoneaster daj, spec.)</td>
<td></td>
</tr>
<tr>
<td>Decreasing number of species per relevé</td>
<td>maturing forests</td>
</tr>
</tbody>
</table>

The main differences point to lower average light conditions, lower pH, higher nutrient contents and higher temperatures.

As mentioned above changes according to different processes can be distinguished.

Lower light conditions due to increased age of the forests with denser canopies decrease the number of mesophilous species which grow preferably in forest gaps. On the other hand climax species occur with increased frequency. These effects can be seen as part of the natural cycling process for forest development.

Another group of processes points to the aerial input of nitrogen, in Switzerland in the order of 30-50 kg per ha and year (Klötzli, 1993). The effects are shown by increasing frequency of nitrophilous species which also grow in poor light conditions. Simultaneously, acidophilous, oligotrophic species decrease. This might be to the contrary of the common opinion of acidification presently going-on due to acid rain but can be explained by the overlay and obvious predominance of the effect of nitrification. As a third major process a climatic effect can be detected. It is shown by both the decreasing number of montane species and increasing number of thermophilous species. The second group is not only represented by indigenous species especially the evergreen broad-leaved - so called laurophyllous - species such as Ilex aquifolium and Hedera helix. Climbing Ivy (fig. 1) may
be seen as an indicator for milder winter conditions (Dierschke, 1994). In addition there are other, non-native species of the same plant functional type, spreading from the garden into adjacent forests (fig. 2). These species may be seen as an integrated indicator for climate induced and probably sustained changes in recent times.

DISCUSSION

Whereas changes due to maturing forests can be seen as part of the natural cycle of vegetation complexes described by Mayer et al. (1980), changes due to nitrification and climate change must be seen as anthropogenically induced. There is no evidence for natural causes for such changes neither for the occurrence of similar processes in former times. The appearance of ornamental laurophyllous exotics in forests has been observed in the surroundings of Zürich by Landolt 1993, by Sukopp & Wurzel (1995) in the Rheinland (Germany) and points even to a biome shift from deciduous to evergreen broad-leaved forest in some places in southern Switzerland (Klötzli et al. 1996, Carraro et al. 1999, Klötzli & Walther, 1999). This effect is supposed to be induced by the changing climate. It becomes reinforced by the fact that on the upper end of the belt considered, montane species are decreasing. The interpretation is appropriate to explain this finding as an upward movement of these species as it was shown by Hofer (1992) and Grabherr (1994) for higher altitudes.

The increasing number of nitrophilous species has been mentioned also by Kuhn (1992), Runge (1994) and Grabietz & Fiedler (1996). Grabietz & Fiedler (1996) also postulate that vegetation reacts very slowly on increased acidity input as single effect, especially on soils with high buffering capacity. They also corroborate the finding that increased nitrogen input may predominate the effect of acidification.

The overall massive loss in species diversity may be seen as an effect of maturing forests. Schmidt (1993) comparing historic and recent conditions of the vegetation of forests pointed out a drastic decline in number of species (ca. 50%) after a period of 35 years. In contrast Brunet et al. (1996) showed a general increase in species diversity once management has been intensified. It is explained by the increase of ruderal species. Also Gabrietz & Fiedler (1996) could show an increase of more heliophilous species. They explained it with an opening of the canopy due to loss in vitality of the forests.

However, analyzing changes in forest ecosystems we must be aware of any sorts of complex influences. Even undisturbed forest sites show an amazing „flow-through“ of species in a period of thirty years, which must be considered with special care and not overinterpreted in studies of shorter duration. Runge (1995) explained this „flow-through“ as an almost unrecognizaeable, continuous coming and going. The same process describes Klötzli (1995) comparing it with driving clouds with varying winds. Further he explains that there is no prediction possible which „population cloud“ will touch the surface of a given plot and which one will be driving past and away.

Only the evaluation of a whole set of data displays the pattern of possible trends. Accordingly, some directed changes can be separated from the background-noise of natural fluctuations and from the natural process of the forest’s life-cycle.
ACKNOWLEDGEMENTS

Without the cooperation of Prof. Dr. Frank Klötzli and André Grundmann, dipl. natw. ETH, both from Geobotanisches Institut ETH Zürich, as well as the colleagues from DIONEA S.A. in Locarno, Gabriele Carraro & Giuseppe Gianoni, both dipl. ing. forest. SPF, the extent of this study would not have been possible. Field-work was initiated by a grant from the National Research Programme (NRP 31, Climate Changes and Natural Disasters), carried by the Swiss Fund for Scientific Research. We thank the responsibilities for backing our project.

ZUSAMMENFASSUNG


Einerseits zeigte sich mit dem vermehrten Auftreten sogenannter Klimaxarten und gleichzeitiger Abnahme von mesophilen Arten ein Effekt der natürlichen altersbedingten Verdunkelung des Waldes. Während dieser Prozess als Teil des natürlichen Waldzyklus gesehen werden kann, traten darüberhinaus aber noch weitere Verschiebungen in der Artenzusammensetzung auf, wofür andere Faktoren hauptverantwortlich sein dürften.

Die Zunahme nitrophiler Arten, welche gleichzeitig nicht sehr grosse Ansprüche an die Lichtbedingungen stellen, sowie die Abnahme oligotropher Arten können als Folge des anthropogen bedingten Nährstoffeintrages durch Niederschläge gesehen werden. Im weiteren lassen die Abnahme montaner Arten sowie die Zunahme immergrüner, breitblättriger - sogenannt laurophyller - Arten auf einen Temperatureffekt schliessen. Vergleiche mit anderen Langzeit-Untersuchungen aus dem mitteleuropäischen Raum lassen den Schluss zu, dass die erhaltenen Resultate nicht nur für die Buchenwälder der Schweiz sondern auch über die Landesgrenzen hinweg ihre Gültigkeit beibehalten dürften.

REFERENCES


